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Self-organization of magnetic nanoparticles: A Monte Carlo study
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To understand the self-organization of magnetic nanocrystals in an applied field, we perform Monte Carlo
simulations of Stockmayer fluids confined between two parallel walls. The system is examined in the gas-
liquid coexistence region of its phase diagram and the field is applied perpendicular to the walls. Gibbs
ensemble simulations are carried out to determine the phase coexistence curves of the confined Stockmayer
fluid. In canonical simulations, different types of organizations appear dependent on particle density: columns,
walls, and elongated and spherical holes. The morphology and size of structures are in good agreement with
results obtained by free energy minimization and experiments. The influence of a distribution of particle sizes

on the particle organization is investigated.
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I. INTRODUCTION

The self-organization of nanoparticles is widely used to
fabricate well-defined structures at the nanometric and me-
soscopic scales [1]. The study of these assemblies shows that
they have new intrinsic properties that correspond to neither
those of the bulk nor those of individual particles. Thus,
tailored materials with new properties can be developed
which may be important for applications and fundamental
research. The use of magnetic nanoparticles is of great inter-
est, since their organization can be altered by an externally
applied magnetic field. Thus, when a field is applied perpen-
dicular to the substrate during the evaporation of a solution
of magnetic nanoparticles, labyrinthine patterns and hexago-
nal arrays of columns of submicrometer dimensions are ob-
served at the end of evaporation [2-5]. Similar structures
were previously obtained in ferrofluid systems [6—11]. A free
energy approach was recently developed to understand the
hexagonal and labyrinthine organizations of magnetic nano-
particles [12,13]. The pattern formation is explained by a
minimization of the free energy, which is described by a sum
of the energy necessary to create the surface of the structures
and the repulsive energy between the aligned magnetic di-
poles. Based on the comparison between experiment and
theory [4,5] the following mechanism of pattern formation
was proposed. During the evaporation process the increase in
nanocrystal concentration leads to a phase transition, form-
ing a colloidal gas and liquid phase within the solvent layer.
The first phase is a diluted nanocrystal solution, whereas the
second one is a highly concentrated solution. Both phases
coexist and the patterns are formed by the concentrated
phase before the end of evaporation. The free energy ap-
proach correctly describes the evolution of the patterns with
field strength, pattern height, and surface coverage [4,5].
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Here, we perform Monte Carlo (MC) simulations of the
self-organization of magnetic nanoparticles in an external
field. The aim is to study three fundamental questions which
seem difficult to answer by free energy approaches. First, the
free energy approaches usually assume idealized predefined
structures to find the energy minimum. This restriction is not
necessary in simulations where structures are free to evolve
according to the imposed external conditions. In particular,
by varying the external field strength one can investigate
possible transitions between hexagonal and labyrinthine
structures. Such transitions were observed experimentally,
but were not found by the free energy approach [12]. Second,
in the literature several free energy models were proposed to
take into account the entropy due to the particle aggregation
[12,14,15]. Thus, the entropy is approximated by that of a
lattice gas, that of a fluid described by the Carnahan-Starling
equation of state [16], or that of a number of distinguishable
aggregates. The results, such as the phase diagram and the
pattern size, depend sensitively on the entropy approxima-
tion. MC simulations, on the other hand, accurately include
entropy and comparison of simulation and free energy results
can thus reveal the importance of entropy for organization.
Finally, recent experiments raised the question of the influ-
ence of particle size polydispersity on pattern morphology
[17]. Thus, columns were found to be mainly produced when
the size distribution is rather low (13%), whereas labyrinths
are formed at higher polydispersity (17%). It is difficult to
introduce particle properties such as the size distribution into
a macroscopic free energy approach, while in simulations the
polydispersity can be easily implemented.

In our simulations, a Stockmayer fluid is confined
between two parallel walls and a magnetic field is applied
perpendicular to the walls. Since pattern formation is experi-
mentally associated with a gas-liquid transition, the param-
eters of the system were chosen within the gas-liquid coex-
istence region of the Stockmayer fluid. The latter was chosen
for convenience since its properties have been widely studied
[18-22]; in particular, the phase diagram of the bulk and its
dependence on an external magnetic field are known [21].
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The paper is organized as follows. In Sec. II the interac-
tion model and the simulation method are described. In Sec.
III, the phase diagram and the magnetization curves of the
Stockmayer fluid confined between two walls are studied in
order to choose values for the density, temperature, and mag-
netic field strength within the gas-liquid coexistence region.
The properties and structures obtained at varying field
strengths, densities, and wall separations are discussed. In
Sec. Il D, the results are compared to those from free energy
approaches. Finally, the size distribution of the particles is
varied from O to 20% to obtain first indications of the influ-
ence of this parameter on the particle organization. Section
IV contains the conclusions.

II. SIMULATION METHOD
A. Interaction model

The interaction between two nanoparticles i and j is de-
scribed by a Stockmayer pair potential, which consists of a
dipole-dipole (DD) interaction vpp(r;;, pm;,p;) and  a
Lennard-Jones (LJ) potential vy (r;)):
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where p; and u; are the dipole moments of particles i and j,
r;j=r;—r; the vector joining the centers of mass of the par-
ticles, and r;;=|r;;|. The LJ term, truncated here at r.=3.20,
models the van der Waals attraction which leads to an iso-
tropic gas-liquid transition.

A value of 10 nm is chosen for o, which is typical for the
cobalt nanocrystals experimentally used [4]. The magnetic
dipole is calculated from the bulk magnetization M, and the

magnetic diameter d,, of the particle using
= poM (7/6)d,,, (3)

where uo=47x107 JTA2m™ is the permeability of
vacuum.

The magnetic diameter is usually smaller than the size o
of the nanocrystals, e.g., due to the coating molecules sur-
rounding the particles. M,=14X10° A m~' and d,,=8 nm
are chosen, close to the values for the cobalt nanocrys-
tals employed in the experiments [4]. Reduced units are
used throughout the paper: T*=kT/e, p*=po’, u*
=u/\(@Amuyeo?), and H*=H\o e, where T, p, u, and H
denote the temperature, number density, dipole moment, and
applied field strength, respectively. Distances are expressed
in units of o. The reduced temperature 7° is fixed at 1.25
which corresponds to a value £=0.331X102"J at T
=300 K. This leads to the following parameters for the
Stockmayer fluid studied here: u=2.0, T=1.25, 0=1.0, p
=0.1-0.5 (for notational convenience the asterisks will be
omitted in the following).

In order to model the thin film which appears during the
evaporation of the nanoparticle solution, the Stockmayer
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fluid is confined between two parallel walls separated by a
distance L. The particle-wall interaction is given by a purely
repulsive (reduced) potential
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where z; is the z coordinate of particle i. z,, denotes the
position of the two walls located at z,,=—L/2 and L/2, re-
spectively. In this study, the height is usually fixed at L=10.
To examine the influence of the height on the particle orga-
nization, additional simulations were carried out at L=4, 6,
and 18. The heights in the experiments in Ref. [4] vary be-
tween 0.2 and 25 um. So the heights between 0.05 and 0.18
um used here are at the lower limit of the experimental
range.

The polydispersity of the particle size was described by a
Gaussian function as in the experiments [17]:

(29,2
e (o - 0)/2v

P(o) = . ()

v\2m
where & denotes the mean diameter (chosen as the unit of
length) of the particles and v the variance. Sampling of
the particle size according to this Gaussian distribution
can be made in various ways. A first one is to choose two
uniform random numbers &, and &, in [0,1] and calculate
r=(=21n &)"?cos(2m&). A random diameter generated
from the distribution (5) is then given by o=a+vr [23,24].
An alternative is to use the rejection method valid for an
arbitrary distribution [24]. A third, nonrandom, way is to
integrate the Gaussian function in Eq. (5) over the interval o;
and o;+ 60; where do; is chosen such that the integral is
equal to 1/N where N is the number of particles. Then, the
value 0;+0.5d0; is attributed as particle size to particle i.
The method starts from o;=0&. The next values of o; are
given by o,=0,_;+do;. Particle sizes smaller then & are
obtained by symmetry.

The variance v=0.1 corresponds to a polydispersity of
10% and yields particle sizes ranging from 0.60 to 1.35.
According to Eq. (3), we can assume that the dipole moment
scales with the cube of the particle diameter: w,=(0;/5)>u,
where u=2.0. The LJ attraction described by the & value is
assumed not to change with particle size. We have checked
that all techniques to sample the particle size yield the same
results within the statistical accuracy of the simulations. The
density is defined as the number of particles per volume.
Please note that in a polydisperse system as defined here the
packing fraction is larger than in a monodisperse one. This is
related to the fact that the particle volume increases with the
cube of the particle diameter. Thus, for the monodisperse
system the packing fraction is #z=(m/6)p, while for a
polydispersity of 10% and 20% it is 5=1.03(7/6)p and
1.12(7/6)p (p=%’63), respectively.

B. Details of the simulation procedure

Canonical ensemble (NVT) MC simulations were per-
formed with number of particles between N=1000 and 3000
[23]. Although both system sizes gave similar qualitative
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structures, the advantage of the larger system size is that
organized structures, such as, for instance, arrays of columns,
could be visualized over a larger region of space. For the
confined system, periodicity of the system in the x and y
directions is assumed whereas for the bulk system periodic-
ity applies in all three spatial directions.

The most appropriate way to deal with the long-range
dipolar interaction in simulations involving, necessarily, a
finite number of particles is to repeat the central simulation
cell periodically in space and to perform an Ewald sum
[23,25]. This method can be conveniently applied to three-
dimensional (3D) bulk systems, but less so for the slab ge-
ometry considered in the present work where periodicity oc-
curs only in two spatial directions. Although rigorous
expressions for the Ewald sums in this geometry are avail-
able (see, e.g., Refs. [26-28]), they, unfortunately, are im-
practical for use in extensive simulation studies as they lead
to large computational costs. To bypass this drawback, an
alternative is to enforce periodicity in three dimensions by
considering an infinite number of parallel slabs separated by
vacuum and applying the convential 3D Ewald method
[29,30]. If the region of empty space is sufficiently large the
interaction between periodic images of the slab is expected
to become negligible. In practice, the slab of particles is en-
closed in a cuboidal simulation cell of dimensions L,L,L,
(with L,=L,) where the dimension L, perpendicular to the
slab is much larger than the slab height L. Periodic boundary
conditions are then applied in all three directions. If the total
dipole moment of the slab in the perpendicular direction
M _=3,u; is nonzero, contributions from image cells in the z
direction can be eliminated (approximately) by supplement-
ing the usual 3D Ewald sum (with conducting boundary con-
ditions) with a correction term 2’7TM / Vs Where Vi
=L,L,L, is the volume of the 31mulat10n cell [31-33].

The Ewald expression for the energy of the fully periodic
3D system of N dipolar particles is then given by [23,31,34]

E=- EE
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The prime in the sum over n=(n,,n,,n,) (n,,n,,n, integers)
means that the term i=j is omitted for n=0. The parameter «
regulates the relative convergence of the sums in direct, r,
and reciprocal, k, space,
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is the cell matrix, and B(r) and C(r) are given by
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FIG. 1. Coexistence curves calculated in the Gibbs ensemble
simulations for the bulk and confined Stockmayer fluid (u=2.0).
The triangles (bulk), squares (L=10), and circles (L=6) are the
coexisting densities found in the simulations. The lines serve as a
guide to the eyes. The lines between the coexisting curves corre-
spond to the values of (p,+p;)/2.

B(r) =erfc(ar) + 2arexp(— a’r?) (8)

N

and

2
C(r) = erfc(ar) + %exp(— a
N

252 (1 + §a2r2> 9)

with erfc(x) the complementary error function [23]. The re-

ciprocal lattice vectors are given by G= (217 szn ZTh).

¥ L.
Vectors satisfying n>=<64 were included in the sum. The
parameter « was chosen sufficiently large to consider only
interactions within the central simulation box in the real
space contributions. L. was taken as (3—4)L. Typical canoni-
cal calculations involved (0.5-2)X10° (N=1000) and
(0.2-0.8) X 10° (N=2592, 3000) cycles, a cycle corre-

sponding to translation and rotation of the N particles.

III1. RESULTS
A. Gas-liquid phase coexistence of a confined Stockmayer fluid

As stated in the Introduction, our aim is to perform simu-
lations at state points inside the gas-liquid coexistence region
for the confined Stockmayer fluid. Therefore, the coexistence
curves were determined using Gibbs ensemble Monte Carlo
(GEMC) simulations [25,35] using a total of 1000 particles.
Typical runs involved between 4 X 10° and 10X 10° cycles
depending on temperature, each cycle corresponding to
translation and rotation of the N particles, one volume
change, and N particle exchanges. During a change of the
system volume V=L,L L, the wall separation L is kept con-
stant.

Figure 1 shows the coexistence curves for the bulk and
two different wall separations L=6 and 10. The critical tem-
perature and density of the bulk are approximately 7.=2.0
and p.=0.29. As GEMC simulations give rather large error
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FIG. 2. (Color online) Magnetization calculated in canonical
Monte Carlo simulations for the bulk and confined Stockmayer
fluid (=1.0, T=1.25, w=2.0). The height of the confined system
is L=10.

bars in the critical region and no finite-size effects were stud-
ied, we did not attempt to do a more precise location of the
critical point. The results are in agreement with those of van
Leeuwen et al. [19] (T,=2.06, p,=0.289), Stoll et al. [36]
(T,=2.062, p,=0.2961), and Stevens and Grest [21] (7.
=2.08, p,=0.28; values taken from their Fig. 1). The lower
value of 7. found in our study results from the truncation of
the LJ part of the Stockmayer potential at r.=3.2. No long-
tail correction has been added (see, e.g., Ref. [37]).

As shown in Fig. 1, confinement of the Stockmayer fluid
between two parallel walls leads to a narrowing of the coex-
istence region and a marked decrease of the critical tempera-
ture and density. The critical point for L=10 is approxi-
mately 7.=1.8,p.=0.2, and T.=1.7,p,.=0.2 for L=6. The
smaller T is the consequence of a lower attractive energy per
particle due to the truncation by the walls.

As shown by Stevens and Grest [21], applying an external
field to the bulk Stockmayer fluid leads to an increase of the
critical temperature while the density changes only slightly,
at least at low field strength (H=5), as a result of the stron-
ger dipole attractions in the presence of the field. They are
caused by the alignment of dipoles with the field direction
which leads to a correlation of dipole moments. We were
able to reproduce this trend for the bulk system but did not
succeed in achieving phase coexistence of the confined fluid
in an applied field in the GEMC simulations except at very
low field. One can note that attractive interactions are dimin-
ished both by lowering L and by increasing the field strength,
which ultimately impedes formation of gas-liquid coexist-
ence. The increase of repulsive forces is at the origin of
pattern formation.

The chosen reduced temperature 7=1.25 is significantly
lower than the critical temperatures of the confined systems
and guarantees that most simulations are carried out in a
region where liquid and gas can coexist.

B. The magnetization curve of a confined Stockmayer fluid

To determine appropriate field strengths for the simula-
tions, the magnetization as a function of field is computed by
simulation [38]. Figure 2 shows that the average magnetiza-
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FIG. 3. Snapshots of configurations for a confined Stockmayer
fluid at T=1.25, u=2.0, p=0.1, and L=10. H= (a),(b) 1, (c) 5, and
(d) 30. Configuration (a) is obtained from a random initial configu-
ration while the simulation of (b) is started from a central concen-
trated phase (see text for details). In (a), (c), and (d) N=2592; in (b)
N=3000.

tions for a confined Stockmayer fluid at p=0.1 and 0.4 are
significantly smaller than that of a bulk system due to the
appearance of a strong demagnetization field at the walls
[13]. The magnetization of the bulk system is calculated at
p=0.6, which corresponds to the density within the clusters
found at p=0.1 and 0.4 for the confined system. In view of
these results the confined systems were studied at the field
strengths H=0, 1, 3, 5, 10, 30, which correspond to 0, 0.018,
0.054, 0.090, 0.18, and 0.545 T, respectively.

C. Particle organizations at a height L=10

In this section we describe the particle organization ob-
tained from simulation for a wall separation L=10. To exam-
ine the influence of initial conditions on the final particle
arrangement the simulations at p=0.1 were started from sev-
eral different initial configurations: (&) random positions and
random orientations of the dipole moments of the particles,
(B) positions on a regular lattice and random orientations of
the dipole moments, (y) configuration at a given field
strength used as input at a higher field, and (&) particles
initially concentrated in a cylinder with density p=0.6 (the
density inside the final droplets) in the middle of the simu-
lation cell.

At low field strength (H<3) typical structures at p=0.1
obtained with conditions a— vy consisted of several droplets
of average radius =7 [Fig. 3(a)]. On the other hand the ini-
tial condition & appeared to be rather stable and did not
evolve much over the “time” span of the simulation [Fig.
3(b)]. In contrast, at H=5, any initial configuration a—3
gave similar final structures. The reason is an increase of the
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FIG. 4. Total internal energy and its Lennard-Jones and dipole-
dipole contributions as a function of the magnetic field strength H
for a confined Stockmayer fluid (7=1.25, u=2.0, p=0.1, and L
=10).

dipolar repulsion, as apparent in Fig. 4 showing the variation
with H of the LJ and dipole-dipole contributions to the en-
ergy. The final organizations at H=5 and 30 in Figs. 3(c) and
3(d) can be described as assemblies of columns with height L
and radius r,,. Figure 5(a) shows a tilted view of the structure
obtained at p=0.1 and H=30.

An enumeration of clusters has been made using a prox-
imity criterion: a particle belongs to a cluster if its distance to
any other particle of the cluster is smaller than r.=1.5 (re-
sults are relatively insensitive to neighboring values). As
shown in Fig. 6 the average number of clusters increases
with field strength (as also apparent on the snapshots of con-
figurations of Fig. 3) and concomitantly the average radius of
the columns decreases (cf. Fig. 7) in good agreement with
experiment and theory [4,5,12,14]. A more detailed compari-

FIG. 5. Tilted view of configurations for the confined Stock-
mayer fluid at 7=1.25, u=2.0, H=30, and L=10: p= (a) 0.1 and
(b) 0.3.
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FIG. 6. Average number of clusters (a) and their size (b) as a

function of the magnetic field strength H for a confined Stockmayer
fluid (T=1.25, u=2.0, p=0.1, and L=10).

son with the free energy results will be carried out below in
Sec. III D. It should be noted that the columns arrange only
approximately in the hexagonal array often observed in ex-
periments [4]. Some deviation from a perfect hexagonal or-
der is explained by the fact that such an organization has to

15— 71— 71— 7 7 7T 1T
—— free energy theory
L QO Monte Carlo simulations |
1+ |
~
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H*

FIG. 7. (Color online) Evolution of the average column radius
for p=0.1. Comparison of simulation and free energy results.
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FIG. 8. Snapshots of configurations for a confined Stockmayer
fluid at T=1.25, ©=2.0, and L=10: (a)—(c) p=0.2, H=1, 5, and 30;
(d)—(f) p=0.3, H=1, 5, and 30; (g)-(i) p=0.4, H=1, 5, and 30. N
=3000 except for (d)—(f) where N=2592.

fit to the periodic boundary conditions applied to our simu-
lation box. Some local disorder is due to the inhomogeneous
size and form of the columns. In experiments as well, a dis-
tortion of the hexagonal structures is observed when the col-
umns are not well defined, as seen in the inset of Fig. 2c in
Ref. [4].

Let us now examine how the structures evolve when the
density increases. At p=0.2 and H=1, slightly elongated
droplets are found [Fig. 8(a)]. At H=5 and 30 [Figs. 8(b) and
8(c)], columns appear which sometimes connect to form
elongated structures, signaling the formation of sheet struc-
tures observed at somewhat higher densities. Actually, at p
=0.3, the sheet structure (which for much larger system sizes
would result in a labyrinthine pattern) predominates at any
field as seen in Figs. 8(d)-8(f). The structures are character-
ized by continuous walls as seen in the tilted view of the
structure obtained at p=0.3 and H=30 in Fig. 5. The particle
distribution p(z) perpendicular to the walls is shown in Fig. 9
for H=1 and 20. Particles are seen to be pushed away by
about 0.50 from each repulsive wall so that the effective
density of the system is approximately 0.375. From Fig. 9, it
is also recognized that at H=1 the density of the droplets is
maximum in the middle of the simulation box and decreases
toward the walls while in the labyrinth phase (H=20) the
density is highest near the walls and decreases in an oscilla-
tory fashion toward the center of the box, where it is roughly
equal to the effective density of the system. At small field
strengths, the surfaces delimiting the clusters perpendicular
to the two walls are curved. Therefore, more particles are in
the middle than close to the walls. At H=20, a sheet structure
is formed. The surfaces delimiting the sheets are straight in
the direction perpendicular to the walls and, therefore, the
density in the center of the box is roughly equal to the effec-
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FIG. 9. Particle density distribution p(z) perpendicular to the
walls at H=1 and 20 (structured curve) for a confined Stockmayer
fluid (T=1.25, p=2.0, p=0.3, and L=10).

tive density of the system. The oscillations of the profile are
induced by the presence of the wall. It shows a structuring
within the aggregates leading to an assembly of particle
chains perpendicular to the walls. The appearance of labyrin-
thine structures at higher densities is in agreement with pre-
diction from free energy approaches [12,15]. In Ref. [12],
a transition from columns to labyrinth is obtained between
$=0.3 and 0.4, where ¢ is the ratio between the liquid and
the total volume fractions. In simulations, the ratio ¢ is
related to the density by the equation ¢=pL/p,(L— o), where
we take into account that a layer of thickness 0.5 between
the fluid and the wall is not accessible to the particles (see
Fig. 9). The density p,; inside the liquid phase is found
to be approximately 0.6. This leads to a volume fraction ¢
=0.37 at p=0.2 where the transition starts to be observed, in
good agreement with the free energy approaches. At p=0.4
[Figs. 8(g)-8(i)], a closed film is found at low field strengths.
At higher fields, new structures appear: elongated holes
in the liquid film appear at p=0.4. At even higher densities
(p>0.5, not shown here) the holes take a cylindrical shape,
arranging in a distorted hexagonal array. This organization
corresponds to the inverted hexagonal structure predicted by
the free energy approach of Ref. [15]. In an upcoming pre-
sentation [39], these structural results will be compared to
recent experiments.

D. Comparison with free energy results

The radii of the columns obtained from simulations are
compared here to predictions from the free energy approach.
The free energy of the system is described as a sum of sur-
face and magnetic terms. Free energy theories which take
only the magnetic and surface energies into account neglect
the change in entropy due to the transitions of the particles
from a free to an aggregated state. Several attempts have
been made in the literature to take this entropy change into
account. Since an accurate approximation of the entropy due
to the aggregation is not yet available, it will be neglected
here. Please note that some entropy, but not directly related
to the particle aggregation, is included in the model by the
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use of the temperature-dependent magnetization. In a first
approach we restrict ourselves to the structures obtained at
p=0.1, which can be well described by a geometrical model
of an assembly of cylinders. The surface energy per cylinder
is given by

F,=2mry(L-20)Y, (10)

where 27ry(L—20) is the surface area of the cylinder. The
surface of the cylinder corresponds to the average position of
the outermost particles in the columns. The interfacial ten-
sion v is approximated by the average LJ energy vy, of the
particles at the surface of the columns

v=0.5p01 5, (11)

ULy varies between —3 and -5 and an average value of —4 is
used. This gives a surface tension of 4.0X 107 J m™2 in SI
units. It is remarkable that this value is very close to the
interfacial tension of 5.0X 107> J m™ obtained for cobalt
nanocrystals by a comparison between the free energy theory
and experiments [4]. We conclude that our model gives a fair
description of the experimental system. For the calculation of
the magnetic energy, we restrict our comparisons to H=35,
where columns of quite homogeneous size are observed in
the simulations. Moreover, at these field strengths the size of
the columns does not depend on initial conditions within the
length of our simulations. In Ref. [13], we have shown that
in this region of field saturation the magnetic energy can be
calculated by assuming a constant magnetization during the
pattern formation. The magnetic energy of a cylinder is then
calculated from the repulsion of the magnetic dipoles (see
Ref. [12] for details):

N() >
F,=2 dydz, | dydz| ——
- 4T e \’(Sl—si)z
VG =52+ 12)

The sum is over all cylinders in the pattern and s;,=(y;,z;)
denotes all points at the top of the cylinder i. The magne-
tization M is taken from the simulations. All calculations
were carried out using the home-made FORTRAN package
HEXALAB [40,41].

The column radius is obtained by the minimization of the
free energy per surface area. Figure 7 shows excellent agree-
ment between free energy and simulation results at H=5.
The agreement is all the more remarkable in view of the fact
that the free energy results do not involve a fit to the simu-
lation values, e.g., by adjusting the interfacial tension. This
agreement indicates that the entropy due to the particle ag-
gregation, neglected here, does not play an important role, at
least at low densities and high field strengths. This shows the
reliability of the free energy approach at these experimental
conditions usually employed to fabricate solid mesostruc-
tures from magnetic nanoparticle solutions [4,5].

E. The influence of height

To investigate the influence of confinement, simulations
were carried out, in addition to L=10, at different densities
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FIG. 10. Snapshots of the configurations for a confined Stock-
mayer fluid at T=1.25, u=2.0, p=0.2: L= (a)—(c) 6 and (d)—(f) 18.
In (a)—(c) N=1000 and in (d)—(f) N=3000.

for L=4, 6, and 18. Typical structures are shown in Fig. 10
for increasing values of H=1, 5, and 30. At the largest height
L=18, similar structures are observed as for L=10. The most
conspicuous effect entailed upon lowering the sample height
is a rapid dissociation of the droplets present in zero field
into smaller, labile aggregates when the field is increased
[see Figs. 10(b) and 10(c)]. The aggregates are not charac-
terized by a well-defined shape such as columns or walls.
The size of these aggregates decreases with density and by
increasing the dipole moment. In fact, for a dipole moment
=3 practically only isolated particles oriented in the field
are observed at densities p=0.1-0.2 as a result of the in-
creased repulsion of the dipolar interaction.

F. The influence of polydispersity

In recent experiments, an indication was found that the
size distribution of the nanoparticles may influence the pat-
tern morphology [17]. To corroborate such a possibility
simulations were carried out using polydispersities of 10%
and 20%. Results were obtained for L=10 and 6 at p
=0.1, 0.2, 0.3, and 0.4, u=2, and field strengths H=1, 5,
10, and 30. No appreciable dependence of the structure mor-
phologies on polydispersity is found, at least for the condi-
tions considered here. As an example, Fig. 11 shows the
structures obtained at p=0.1, 0.2, 0.3, and 0.4, L=10, for an
applied field H=30. At high densities of p=0.4, some differ-
ences in the structures [Figs. 11(j)—11(1)] are observed. Thus,
the structures are characterized by spherical holes at a poly-
dispersity of 20%, while in the monodisperse case, sheets are
found. This may be explained by the higher volume fraction
in the polydisperse case due to the presence of larger par-
ticles. Thus, the volume fraction increases by 12% for a
polydispersity of 20%. In the monodisperse case, at a 12%
higher volume fraction corresponding to a number density of
0.45 the formation of spherical holes is also observed [38].
The morphologies observed for 10% (second column) and
20% (third column) polydispersity are quite similar to those
for the monodisperse system (first column). The structures
obtained for the polydisperse systems seem to be less well
defined than in the monodisperse case. Some size segrega-
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FIG. 11. (Color online) Snapshots of the configurations for a
confined Stockmayer fluid at =1, T=1.25, ©=2.0, p=0.2, and L
=10. First column, monodisperse; second column, polydispersity of
10%; third column, polydispersity of 20%. (a)—(c) p=0.1, (d)—(f)
p=0.2, (2)-(i) p=0.3, and (j)—(I) p=0.4. The gray tones (color on-
line) represent particles of different sizes. N=1000.

tion is seen to take place during structure formation. Thus the
larger particles are found only in the larger clusters, while
isolated particles are of the smaller size as also found for the
bulk system in Ref. [42]. For the more confined system
L=6, as for the monodisperse case, the droplets existing in
zero field rapidly dissociate into small aggregates when the
field increases.

IV. CONCLUSIONS

A Stockmayer fluid confined between two parallel walls is
studied by MC simulation as a model system of a cobalt
nanocrystal solution evaporating in a field applied perpen-
dicular to the substrate. Pattern formation as a function of
field strength is reported for various densities and sample
heights at the unique temperature 7=1.25 and dipole mo-
ment u=2.

In small fields the structure is characterized, for all den-
sities considered (p=0.1-0.5), by droplets and isolated par-
ticles typical of those inside a gas-liquid two-phase region.
Transitions to a microphase upon increase of the external
field depend on the density. In the density range p
=0.1-0.2 and for L=10 a transition to a columnar phase
occurs with nearly hexagonal order of the columns. As the
field increases, the radius of the more or less cylindrical col-
umns decreases, i.e., in our simulations performed at con-
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stant number of particles (between 1000 and 3000), the num-
ber of columns increases and the average number of particles
in a column decreases. Quite remarkably, the free energy
approach described in Sec. III D predicts the dependence of
column radius on field strength extremely well.

In the range p=0.3-0.4, L=10, the microphase consists
of an assembly of vertical sheets which on a much larger
scale would form a labyrinth pattern. No clear indications for
a field-induced transition between columns and labyrinths
were observed at fixed density. If such a transition exists,
it must be limited to a small range of densities between 0.2
and 0.3.

Well-characterized pattern formation requires a suffi-
ciently strong dipolar interaction. A dipole moment such that
>/ T~3.2 appears to be close to the minimal value.

The formation of different structures such as columns,
labyrinths, and holes with increasing densities is in good
agreement with results from the free energy theory [12,15].
Thus, the comparison with simulations confirms the reliabil-
ity of the free energy approach in predicting the pattern mor-
phology and size at high field strengths, even when the en-
tropy due to the particle aggregation is neglected.

Concerning the influence of sample height on pattern for-
mation, an increase of L to 18 did not entail qualitative
changes. Similarly, a columnar phase occurs at p=0.1 in the
unconfined system (periodicity in all three space directions;
figure not shown; see also Ref. [43]). On the contrary, low-
ering of L has a more marked effect. Thus, for L=6, the
droplets present at zero field rapidly dissociate, in a finite
field, into small irregular aggregates with no well-defined
order. The size of these aggregates decreases with density
and sample height. In the limit of a very thin sample (mono-
layer) the Stockmayer potential reduces, in a strong magnetic
field, to the sum of a LJ potential and a repulsive long-range
% potential. As shown by simulation [44] and experimental
[45] results, this magnetic monolayer system exhibits mi-
crophases similar to those found here (in strong fields). One
can note, however, that in these works a much larger dipole
moment was used, yielding sharper phases.

Quite remarkably, microphases including circular-shaped
clusters, disordered or ordered on a triangular lattice, and
striped phases are also found in simulations of 2D simple
systems (spherically symmetric potentials) when a long-
range repulsive potential is in competion with a shorter-
range attractive potential [46]. In 3D systems of competing
Yukawa potentials, hole structures were observed as well
[47]. This strengthens the belief that formation of mi-
crophases can to a large extent be understood by the inter-
play between the long-range repulsive dipolar forces and at-
tractive forces. Similar considerations have been put forward
to explain modulated phases in ferrofluids, thin films of mag-
netic garnets, diblock copolymers, phospholipid monolayers,
etc. [48].

In regard to the influence of polydispersity in the range
10%-20% the morphologies of microstructures are found not
to differ qualitatively from those of the monodisperse case.
This finding does not match experimental results on cobalt
nanocrystals, where the size distribution appears to have a
major impact on pattern formation [17]. While at low poly-
dispersity (13%) compact columns are observed to self-
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organize into a face-centered-cubic (rather than a hexagonal)
structure, at larger polydispersity (18%—20%) a significant
number of isolated columns fuse together to form wormlike
and labyrinth structures. The mechanism of fusion is attrib-
uted to creation of defects at the ends of the columns [17]. Tt
is interesting to note that for a size distribution of 22% only
labyrinths are formed with cobalt nanocrystals, whereas with
v-Fe,05 nanocrystals only columns are produced [5]. This
may be related to the fact that the volume fraction ¢ is re-
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stricted to values below 0.1 for these nanocrystals. In con-
trast, for cobalt nanocrystals ¢ varies between 0.05 and 0.5,
where formation of either hexagonal and labyrinthine pat-
terns is expected from theory. We assume that the influence
of the polydispersity on the morphology observed for cobalt
nanocrystals may be caused by subtle effects, such as a
stronger van der Waals attraction between the larger particles
compared to the smaller ones, or by an increase in density
with the polydispersity of the system.
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